

Single particle activities Mohammad Reza Ejtehadi Sharif University of Technology, 2016 Erice, September 2019

The city Tehran

Soft Condensed matter @ Sharif

Soft Condensed matter @ Shar

A Low Reynolds number predator

An example of microscopic wolf and rabbit

Taken in 1950s by David Rogers at Vanderbilt University

Why does it move? To find something

Low Reynolds number swimming

$$\rho\left(\frac{\partial V}{\partial t} + V \cdot \nabla V\right) = \nabla P + \rho g + \mu \nabla^2 V$$

Low Reynolds number swimming is difficult

Najafi-Golestanian swimmer

Najafi, Golestanian, PRE (2003)

Two dimensional active swimmer design

Mehram Ebrahimian

Mohammad Yekezareh

Ebrahimian, Yekezareh, Ejtehadi, Phys Rev E (2015) Translational and rotational displacements after a full period

For regular cycles it doesn't go anywhere

For possible values of ϵ :

radius of rotation < triangle size Then It is almost a rotor

Introduction of the noise

Chiral Run and Tumble – Arc and Tumble

Ebrahimian, Yekezareh, <u>Ejtehadi</u>, Phys Rev E (2015)

If linkers act independently

It is more realistic to assume any linker as an individual molecular motor which acts independently in response to chemicals

$$S + E \xrightarrow[k_3]{k_1} SE \xrightarrow[k_2]{k_2} E + P$$

SE : arm in extended state
E : arm in shrank state

Characteristic times:

$$t_o = \frac{1}{k_2 + k_3}$$
$$t_c = t_0 \frac{k_m}{C_s}$$

SE

$$k_m = \frac{k_2 + k_3}{k_1}$$

Optimized concentration of the chemicals

If $C_s \ll k_m$ then $t_c \gg t_0$,

or if $C_s \gg k_m$ then $t_c \ll t_0$

almost all the link length changes are reversible and there is no movement

Chemotaxis

Drift velocity depends on both gradient of the concentration and concentration of the chemicals itself.

$$\boldsymbol{v} = f(c) \boldsymbol{\nabla} c$$

Prey and Predator

To introduce the predator it is supposed that the prey is a source of chemicals which affect the linkers dynamics.

The large red and small blue circles indicate the size and COM of predator, respectively. The arms of the predator swimmer are presented by blue triangles. The prey is the blue point with green circle.

Straightforward generalization to three dimensions

Mechanical response of cells to substrate topography

Cells are soft and flexible

- They responses to deformations and external forces
- But in much larger time and size scales in compare to macromolecules inside.
- Large deformation could be harmful and nonreversible.

Cells are found in different shapes and sizes

Basic structural elements

Basic structural elements

Membrane

Basic structural elements

Filament network

Physicist's perspective

How does a cell maintain/change its shape?

How does the shape change if we apply force (stress)?

How does it affect the shape of the nucleus?

What about the chromatins inside?

How they affect their biological functions? (mechanotransductions)

THE VIRTUAL CELL

Maziar Heidari

Tiam Heydari

Ali Farnudi

Shahrzad Zareh,

Oveis Sheibani,

Hoda Shirzad,

Related Pages

The Virtual Cell Model Software Package

Q- Search

Main Page

The Virtula Cell Model

C Coding Style Commenting Style

Namespaces Classes

Files

Setting up your IDE Installation

The Virtula Cell Model

Namespaces •

The Virtual Cell Model Software Package

Files -

Breif Introduction

Classes •

The Soft Condensed Matter Group at Sharif university of Technology lead by Prof. Mohammad Reza Ejtehadi has developed a unifying computational framework to create a multicomponent cell model, called the **Virtual Cell Model** (VCM) that has the capability to predict changes in whole cell and cell nucleus characteristics (in terms of shape, direction, and even chromatin conformation) on cell substrates. Modelling data used in the package are correlated with cell culture experimental outcomes in order to confirm the applicability of the models and to demonstrate their ability to reflect the qualitative behaviour of different cells. This may provide a reliable, efficient, and fast high-throughput approach for the development of optimised substrates for a broad range of cellular applications including stem cell differentiation. Since the VCM is designed to mimic properties of soft matter in the micro scale, it can be used to study a verity of physical problems. Mechanical properties of thin film near or attached to other objects.

The VCM utilises 4 basic parts that are the membrane, the actin network, the nucleus, and the substrate.

The Membrane

The membrane is made of a series of nodes (x, y, and z coordinates of points in space) and a list of node pairs that are imported into the software. The VCM package can automatically import mesh files[^1] generated by the GMSH software.

[^1]: The current version is compatible with the gmsh version II file style. The option is also available in gmsh versions 2 and above.

The Virtual Cell: Components

The Virtual cell model

The Virtual Cell: Membranes

The Virtual Cell: Membranes

Gompper, gerhard and Kroll, Daniel, "in Statistical Mechanics of Membranes and Surfaces" Edited by D. R. Nelson, T. Piran, and S. Weinberg, 2nd ed.: World Scientific Publishing Company, 2004.

The Virtual Cell: Cytoscleton

$$\gamma(t) = \gamma \cdot \cos \omega t.$$

$$\sigma(t) = -\int_{-\infty}^{t} dt' G(t - t') \gamma . \omega \sin \omega t$$
$$= -\int_{\cdot}^{\infty} dt' G(t') \gamma . \omega \sin \omega (t - t')$$
$$= \gamma . [G'(\omega) \cos \omega t - G''(\omega) \sin \omega t]$$

$$G'(\omega) = \omega \int_{\cdot}^{\infty} dt \sin \omega t G(t)$$

 $G''(\omega) = \omega \int_{\cdot}^{\infty} dt \cos \omega t G(t)$

$$G^*(\omega) = G'(\omega) + iG''(\omega).$$

Viscoelastic solids

[10] H. Nöding, M. Schön, C. Reinermann, N. Dörrer, A. Kürschner, B. Geil, I. Mey, C. Heussinger, A. Janshoff, and C. Steinem, "Rheology of membrane- attached minimal actin cortices," *The Journal of Physical Chemistry B*, 2018

The Virtual Cell: Cytoscleton

Lewandowski, R. & Chorążyczewski, B. Identification of the parameters of the Kelvin–Voigt and the Maxwell fractional models, used to 9 modeling of viscoelastic dampers. *Computers & Structures* 88, 1-17 (2010).

The Virtual Cell

Inside nucleus: Bead-Spring to model Chromatin fibers

$$U_{\text{bond}} + U_{\text{bending}} + U_{\text{excludedvuolume}} = \frac{\kappa_{\text{bonding}}}{2} \sum_{i=1}^{N_c} \sum_{j=1}^{N_i-1} \left(r_{j,j+1}^i - r_0 \right)^2 + \frac{\kappa_{\text{bending}}}{2} \sum_{i=1}^{N_c} \sum_{j=1}^{N_i-2} \left(\theta_{j,j+1}^i - \theta_0 \right)^2 + \sum_{\substack{\langle i,j \rangle \\ i < j, r_{ii} < \sigma_{ch}}} 4 \in_{ch} \left\{ \left(\frac{\sigma_{ch}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ch}}{r_{ij}} \right)^6 \right\}$$

Mashinchian, Omid, et al. "Cell-imprinted substrates act as an artificial niche for skin regeneration." ACS applied materials & interfaces (2014).

42

Chromatins inside the nucleus

Shivashankar, G. V. "Mechanosignaling to the cell nucleus and gene regulation." Annual review of biophysics 40 (2011): 361-378.

Mashinchian, Omid, MRE, et al. "Cell-imprinted substrates act as an artificial niche for skin regeneration." ACS applied materials & interfaces 6.15 (2014): 13280-13292.

43

Ring chromosomes

Chromosomes should be on unknotted state to perform their biological function

Rosa, Everaers, PloS Computational Biology (2008)

Shaofan Li, Bohua Sun, Advances in Soft Matter Mechanics, Springer Berlin Heidelberg (2012)

Emily B. Walton, Sunyoung Lee, and Krystyn J. Van Vliet, Biophys J (2008)

 $F(r) = \frac{4\sigma}{\epsilon} \left[\left(\frac{\epsilon}{r}\right)^5 - \left(\frac{\epsilon}{r}\right)^3 \right] \frac{r}{r}$

VIRTUAL CELL AT WORK

Chromatin condensation

Versaevel, Marie. et al, Nature Commun. 3:671 (2012)

Mechanotransduction

[O. Mashinchian, <u>MR Ejtehadi</u> and et al, ACS Applied Materials and Interfaces (2014)]

Closed or Open chains

mesenchymal stem cells

Depth: 100 nm Depth: 500 nm Depth: 300 nm Width: 5 µm Width: 50 µm

Grooved substrate

mesenchymal stem cells

The Virtual Cell Model

Cell on Grooved substrate

Mesenchymal stem cells

Chromatin interaction network

more complicated substrates

STEM CELL BEHAVIOUR ON A CELL-IMPRINTED SUBSTRATE

ENGINEERED SUBSTRATES

P. P. S. S. Abadi, J. C. Garbern,
S. Behzadi, M. J. Hill, J. S.
Tresback, T. Heydari, M. R.
Ejtehadi, N. Ahmed, E. Copley,
H. Aghaverdi, R. T. Lee, O. C.
Farokhzad, M. Mahmoudi,
Adv. Funct. Mater. 2018

www.advancedsciencenews.com

(a) (b) (c)60° (d) (f) (e) 30° direction of patterns -30° -60°

www.afm-journal.de

Modeling cell Chemotaxis

Keren, Kinneret, et al. "Mechanism of shape determination in motile cells." *Nature* 453.7194 (2008): 475-480.

To have very minimal model of the activity of the cytoskeleton at the cell periphery of the migrating cell, the direction of the generated force is considered normal to the periphery of the cell membrane and the distribution of the force is scaled by $|\cos(\alpha)|^{\frac{1}{8}} \operatorname{sign}(\cos(\alpha))$, where \propto is the angel between the polarity direction and the point on the cell periphery.

Cell motility

Projects in hand

Topotaxis

LG Vincent, YS Choi, B Alonso-Latorre, JC del Álamo, and AJ Engler, Biothech J (2013)

JS Park, DH Kim, and A Levchenko, Biophys J (2018)

Chromosomes in flexible confinements

Graphene wrapping bacteria

Acknowledgements:

Mehran Ebrahimian Mohammad Yekezareh Tiam Heydari Maziar Heidari Ali Farnudi Shahrzad Zareh Oveis Sheibani Hoda Shirzad Vahid Satarifard

Morteza Mahmoudi Matthew Dalby Omid Machinchian Naeimeh Naseri